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The motivation: Highly oscillatory quadrature
Compute

I[f ] =
∫ b
a
f(x)eiωg(x) dx, ω � 1.

? Classical Gaussian quadrature requires O(ω) points – useless!

? Modern methods (Filon, Levin, numerical steepest descent), based on
asymptotic expansions, are very effective and very high accuracy is attain-
able uniformly in ω – paradoxically, accuracy increases as ω grows.

But. . . why not consider complex-valued Gaussian quadrature?
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Use the sesquilinear form

〈p, q〉ω =
∫ b
a
p(x)q(x)eiωg(x) dx, ω ≥ 0,

to define orthogonal polynomials – thus, we seek monic pn ∈ Pn s.t.

〈pn, x`〉ω = 0, ` = 0, . . . , n− 1.

Provided that such a pn exists, let its zeros be ck = ck(ω), k = 1, . . . , n,

bk = bk(ω) =
∫ b
a

n∏
`=1
` 6=k

x− c`
ck − c`

eiωg(x) dx, k = 1, . . . , n

and set

Q[f ] =
n∑

k=1

bkf(ck).
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How good is Q[f ]? Consider

I[f ] =
∫ 1

−1
f(x)eiωx dx and I[f ] =

∫ 1

−1
f(x)eiωx2

dx

for f(x) = ex.

In all figures we display − log10 (i.e., the number of significant digits) of the error for

ω ∈ [0,100]. For plain Gaussian quadrature we plot it for n = 4,8, . . . ,24, for asymp-

totic methods and for complex Gaussian quadrature for an increasing number of points.

Gaussian quadrature
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Asymptotic quadrature

Filon-type quadrature
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Numerical steepest descent

Complex-valued Gaussian quadrature
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Asheim, Deaño, Huybrechs & Wang:

1. The error of complex Gaussian quadrature is O
(
ω−2n−1

)
;

2. The quadrature seems to exist for all even n but fails for a countable
number of values of ω for an odd n;

3. The zeros of pn( · , ω), the nth-degree orthogonal polynomial w.r.t.
dµ(x, ω) = eiωx dx, describe a strange pattern in the complex plane.

In this talk we explain this and much more, describing in great detail the
kissing polynomials: the polynomials orthogonal w.r.t.

〈p, q〉ω =
∫ 1

−1
p(x)q(x)eiωx dx.
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The zeros and beyond: An anatomy of a kiss
The zeros of p6 (in green) and p7 (in purple) as ω travels from 0 to +∞
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Moments and Hankel determinants Let

hn(ω) = det


µ0 µ1 · · · µn
µ1 µ2 · · · µn+1... ... ...
µn µn+1 · · · µ2n

, where µn =
∫ 1

−1
xneiωx dx.

Then pn exists iff hn−1 6= 0 – indeed,

pn(x, ω) =
1

hn−1
det


µ0 µ1 · · · µn−1 1
µ1 µ2 · · · µn x
... ... ... ...
µn µn+1 · · · µ2n−1 xn

.

Hankel determinants are often of minor importance in OP theory because hn > 0 for all

Borel measures – but in our case all we can say by this stage is that hn is complex and,

at least in principle, it might be zero.

9



The asymptotics of Hankel determinants

We commence from an old result of Heine,

hn−1 =
1

n!

∫ 1

−1
· · ·

∫ 1

−1

∏
0≤k<`≤n−1

(x` − xk)2eiω1>x dx0 · · · dxn−1,

which we expand asymptotically in ω. Iterating∫ 1

−1
f(x)eiωx dx ∼ −

∞∑
m=0

1

(−iω)m+1
[eiωf(m)(1)− e−iωf(m)(−1)],

we have∫ 1

−1
· · ·

∫ 1

−1
f(x)eiω1>x dx

∼(−1)n
∞∑

m=0

1

(−iω)m+n

∑
|k|=m

∑
v∈Vn

(−1)s(v)eiω1>v∂kxf(v),

where Vn are the vertices of [−1,1]n and s(v) is the number of (−1)s at
the vertex v.
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We need to consider derivatives of

f(x) =
n−2∏
k=0

n−1∏
`=k+1

(x` − xk)2

at a vertex v ∈ Vn. The problem is that many derivatives vanish!

Everything is symmetric, hence we can assume that for s(v) = r we have

v = (
r times︷ ︸︸ ︷

−1, . . . ,−1,
n−r times︷ ︸︸ ︷

+1, . . . ,+1).

Let

αr(x) =
∏

0≤k<`≤r−1

(x` − xk), βn,r(x) =
r−1∏
k=0

n−1∏
`=r

(x` − xk),

then

f(x) = α2
r (x0, . . . , xr−1)α2

n−r(xr, . . . , xn−1)β2
n,r(x0, . . . , xn−1).
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To determine the leading expansion term, we note that βn,r(v) = 2r(n−r),
therefore we need be concerned just with αr at−1 and αn−r at +1. Since
α(x+ a1) = α(x) for all x ∈ Rn, a ∈ R, it is sufficient to examine these
expansions at x = 0.

By the definition of a determinant,

αr(x) = VDM(x0, . . . , xr−1) =
∑
π∈Πr

(−1)σ(π)x
π0
0 x

π1
1 · · ·x

πr−1
r−1 ,

where Πr is the set of permutations of length r and σ(π) is the sign of π.
We deduce that ∂kxαr(0) = 0 unless k = π ∈ Πr – in the latter case

∂πxαr(0) = (−1)σ(π)
r−1∏
j=0

πj! = (−1)σ(π)sf(r − 1),

where sf(m) = 0!1! · · ·m! is a super-factorial.
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Consequently,

∂kxα
2
r (0) =

{
(−1)σ(π1)+σ(π2)sf2(r − 1), k = π1 + π2,

0, otherwise.

We have for the multi-index k = [k0, . . . , kn−1]

∂kxf(v) =∂kx[α2
r (−1)α2

n−r(+1)]

=
k0∑
`=0

· · ·
kn−1∑

`n−1=0

n−1∏
j=0

(kj
`j

)
∂`xα

2
r (0)∂k−`x α2

n−r(0).

A term is nonzero only for ` = π[1]
1 + π[1]

2 and k − ` = π[2]
1 + π[2]

2 , where

π[1]
i ∈ Πr and π[2]

i ∈ Πn−r.

13



Therefore, for k = π[1]
1 + π[1]

2 + π[2]
1 + π[2]

2 ,

∂kxf(v) =
∑

π[1]
1 ,π[1]

2 ∈Πr

r−1∏
i=0

(π[1]
1,i + π

[1]
2,i

π
[1]
1,i

)
∂
π[1]

1
x αr(0)∂

π[1]
2

x αr(0)

×
∑

π[2]
1 ,π[2]

2 ∈Πn−r

n−r−1∏
i=0

(π[2]
1,i + π

[2]
2,i

π
[2]
1,i

)
∂
π[2]

1
x αn−r(0)∂

π[2]
2

x αn−r(0)

= sf2(r − 1)sf2(n− r − 1)

×
∑

π1∈Πr

(−1)σ(π1) ∑
π2∈Πr

(−1)σ(π2)
r−1∏
i=0

(π1,i + π2,i

π1,i

)

×
∑

π1∈Πn−r

(−1)σ(π1) ∑
π2∈Πn−r

(−1)σ(π2)
n−r−1∏
i=0

(π1,i + π2,i

π1,i

)
.
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Identifying a sum with a determinant and permuting rows,

∑
π2∈Πs

(−1)σ(π2)
s−1∏
i=0

(π1,i + π2,i

π1,i

)
= det(A[s]

π1,i,j
)i,j=0,...,s−1

= (−1)σ(π1) det(A[s]
i,j)i,j=0,...,s−1,

where A[s]
i,j =

(
i+j
i

)
, i, j = 0, . . . , s− 1. Therefore,

∂kxf(v) = sf(r − 1)sf(r)sf(n− r − 1)sf(n− r) detA[r] detA[n−r].

It is easy to see that detA[s] ≡ 1, consequently

∂kxf(v) = sf(r − 1)sf(r)sf(n− r − 1)sf(n− r)

and we are done.
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For each r = 0, . . . , n we consider the contribution of the
(
n
r

)
vertices with

r (−1)s. The least non-zero derivative occurs when |n− 2r| is minimised
and it follows that

Theorem It is true for ω � 1 that

h2N−1(ω)∼
(−1)N4N

2
sf4(N − 1)

ω2N2 +O
(
ω−2N2−1

)
,

h2N(ω)∼
2(−1)N+14N(N+1)sf2(N − 1)sf2(N)

ω2N(N+1)+1
sinω

+O
(
ω−2(N2+N+1)

)
.

Corollary For ω � 1 the polynomial p2N( · , ω) always exists, while
p2N+1( · , ω) exists except for a countable number of points asymptoti-
cally spaced at distance π.
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Explaining a kiss Many features of classical orthogonal polynomials are
lost but the three-term recurrence relation, being a purely algebraic arte-
fact, remains true,

pn+1(x, ω) = (x− αn)pn(x, ω)−
hn−2hn

h2
n−1

pn−1(x, ω),

where

αn =
hn−1

hn

∫ 1

−1
xp2
n(x, ω)eiωx dx.

Once hn(ω?) = 0, it follows that pn+1( · , ω?) blows up – more specifically,
letting

p̃n(x, ω) = hn−1(ω)pn(x, ω) = det


µ0 µ1 · · · µn−1 1
µ1 µ2 · · · µn x
... ... ... ...
µn µn+1 · · · µ2n−1 xn

,
we deduce that p̃n+1( · , ω?) = p̃n( · , ω?) – one zero of p̃n+1 travels to
∞ and the remaining ones coincide with the zeros of p̃n: a kiss!
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We therefore deduce that (at least for ω � 1) kisses occur between p2N
and p2N+1.

Symmetric functions Letw(x) be any symmetric function of x0, . . . , xn−1.
Then ∫ 1

−1
· · ·

∫ 1

−1
w(x)

∏
0≤k<`≤n−1

(x` − xk)2eiω1>x dx

can be expanded in similar fashion. In particular, for z ∈ C s.t. |z ± 1| > δ

p2N(x, ω)∼(x2 − 1)N +O
(
ω−1

)
,

p2N+1(x, ω)∼(x2 − 1)N(x+ i cotω) +O
(
ω−1

)
.

Moreover,

p2N(1, ω)∼
2NN !

(iω)N
+O

(
ω−N−1

)
,

p2N+1(1, ω)∼
2NN !

(iω)N
(1 + i cotω) +O

(
ω−N−1

)
.
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Finally, expanding zeros of pn near +1,

p2N

(
1 +

c

−iω

)
∼

2NN !

ωN
LN(c) +O

(
ω−N−1

)
,

p2N+1

(
1 +

c

−iω

)
∼

2NN !

ωN
LN(c) +O

(
ω−N−1

)
,

where Ln = L(0)
n is the Laguerre polynomial.

Theorem For ω � 1 the zeros of pn (except for the one zero on iR for odd
n) are of the form ±[1 + c/(−iω)] +O

(
ω−2

)
, where Lbn/2c(c) = 0.

Recall that the zeros of pn are the quadrature points of our scheme.
This creates a bridge between complex Gaussian quadrature and other highly oscillatory

quadrature methods, which tend – for perfectly valid reasons of asymptotics – to aggre-

gate near the endpoints. For example, numerical steepest descent uses exactly the points

±[1 + c/(−iω)] where c is as above.
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Further developments An aftermath of a kiss
Zeros of hn−1 They can be again analysed using asymptotic expansions,
whereby they become expressible using the Lambert W function.

h1 h2 h3

h4 h5 h6 20



Existence – or otherwise – of p2N for all ω ≥ 0

The method of proof is a homotopy from ω � 1 (where we know that
h2N−1(ω) 6= 0) to all ω ≥ 0. An important role is played by σn such that
pn(x) = xn − σnxn−1 + · · · – e.g. in the recurrence relation

pn+1(x) = (x− σn+1 + σn)pn(x)−
hn−2hn

h2
n−1

pn−1.

It is possible to prove that

h′n−1(ω) = iσn(ω)hn−1(ω)

and this gives us a handle on h′n−1.

Theorem The Hankel determinant h2N−1 is nonzero for all ω ≥ 0.

Suppose that this isn’t true and let ω? be the largest value of ω for which a zero occurs.
Then hn−1(ω?) = h′n−1(ω?) = 0, but we can prove that this is impossible.
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Other complex measures Sky is the limit! So far, we have analysed the
sesquilinear form

〈p, q〉ω =
∫ 1

−1
p(x)q(x)eiωx2

dx

and we can say a great deal about the underlying polynomials. Their be-
haviour (and the proofs) is much more complicated but, at least asymptot-
ically, all hn−1s are nonzero. The zeros don’t kiss but they display a wide
range of other fascinating behaviour.

But this belongs to another talk. . .
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You must remember this,

A kiss is just a kiss,

A ψ is just a ψ.

The fundamental things apply

As t� 1.
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