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The motivation: Highly oscillatory quadrature

Compute

If] = /abf(a?)eiwg(:”) dz,  w>1.

* Classical Gaussian quadrature requires O(w) points — useless!

* Modern methods (Filon, Levin, numerical steepest descent), based on
asymptotic expansions, are very effective and very high accuracy is attain-
able uniformly in w — paradoxically, accuracy increases as w grows.

But. .. why not consider complex-valued Gaussian quadrature?



Use the sesquilinear form

b .
(P, Q) = / p(2)q(z)e“I®) dz,  w >0,
a
to define orthogonal polynomials — thus, we seek monic p,, € [P, s.t.
<pn7517€>w: ) €=O,,n—1

Provided that such a p,, exists, let its zeros be ¢, = ¢, (w), k= 1,...,n,
b n _ .
by, = by.(w) =/ [[ Z=%ews@ gy,  k=1,...n
a =1 Cr. — Cyp
0~k
and set

QUi = 3 bf(cp).
k=1



How good is Q[f]? Consider

I[f] =/_11f(x)e‘w$dx and  I[f] =/_11f(:c)ei°‘”72d:c
for f(x) = e”.

In all figures we display —logg (i.e., the number of significant digits) of the error for
w € [0,100]. For plain Gaussian quadrature we plot it for n = 4,8, ..., 24, for asymp-
totic methods and for complex Gaussian quadrature for an increasing number of points.

Gaussian quadrature
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Asymptotic quadrature
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Numerical steepest descent
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1. The error of complex Gaussian quadrature is O(w—Q”—l);

2. The quadrature seems to exist for all even n but fails for a countable
number of values of w for an odd n;

3. The zeros of p,(-,w), the nth-degree orthogonal polynomial w.r.t.
du(z, w) = el“? dz, describe a strange pattern in the complex plane.

In this talk we explain this and much more, describing in great detail the
kissing polynomials: the polynomials orthogonal w.r.t.

(P, Q)w = /_11 p(:r;)q(w)eiwx dx.



The zeros and beyond: An anatomy of a kiss

The zeros of ps (in green) and p7 (in purple) as w travels from O to +oo

0.5
IW T T r\
-1 0.5 0 05 1

0254

000000

0.05- A 118

= =
oo =

(=

= =

=4

e o

= = |

E’J"— e

= =

= =

Pl i __,,_....M s 3 v
= et S




Moments and Hankel determinants Let

g0 M1 pm 1
hn(w) = det 'u:l ’LL:Q Mn:—l—l ,  Where pu, = / 1:13"7’ei°‘”j dz.
| Un Un41 - M2n ]
Then p,, exists iff h,,_1 #* O —indeed,
po M1 g1 1
pn(z,w) = ——det| #1 F2Ano ®
— | : : : :
| Bn Hp41 v Hop—1 T

Hankel determinants are often of minor importance in OP theory because h,, > O for all
Borel measures — but in our case all we can say by this stage is that h, is complex and,

at least in principle, it might be zero.



The asymptotics of Hankel determinants

We commence from an old result of ,

IR 1 > w1l
hn—1=—|/ / Il (&g —ap)e” Tdag--- dzy_q,
n: /-1 —1 o<k<r<n—1

which we expand asymptotically in w. lterating

1 . o0 1 . .
[ f@erde~ = 30 S e () e M),

N m=0

we have
1 1 iwl! x
/_1---/_1f(:1:)e da
o0 1 . T
~(—1)" . ST Y (—1)s@elwl vgk ey,
mZ::O (—iw)mn k|=m vEV,

where V,, are the vertices of [—1, 1] and s(v) is the number of (—1)s at
the vertex v.
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We need to consider derivatives of

n—2 n—1
f@)=11 Tl (z¢—=)?
k=0 f=Fk-+1

at a vertex v € V. The problem is that many derivatives vanish!

Everything is symmetric, hence we can assume that for s(v) = » we have

r times n—r times
v=("1,....-1.F1,...,+1).
Let
r—1n—1
ar(x) = H (g — 1), Bn,r(x) = H H (g — 1),
O0<k<t<r—1 k=0 ¢=r
then

2 2 2
f(w) — Qe (x07 o 7567“—1)0477,—7“(337“7 I 7xn—1)ﬂn,r(aj07 oo 73377,—1)'
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To determine the leading expansion term, we note that 3,, -(v) = 27 ("),
therefore we need be concerned just with o at —1 and «,, - at +1. Since
alx+al) = a(x) forall z € R", a € R, it is sufficient to examine these
expansions at x = 0.

By the definition of a determinant,
ar(x) = VDM(xqg,...,x,_1) = Z (— 1)0(77)33%:137{1 . x:T__ll,
welly

where 1, is the set of permutations of length » and o () is the sign of .
We deduce that 9%a,-(0) = 0 unless k = 7 € I, —in the latter case

r—1
07 ar(0) = (=1)°™) [T 7! = (=1)7Msf(r — 1),
j=0

where sf(m) = 0!1!-..m/! is a super-factorial.
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Consequently,
k 2 (_1)U(W1)+U(W2)Sf2(r T 1)7 k= ™1 _I_ ™o,
Opa;(0) = :
0, otherwise.
We have for the multi-index k& = [k, ..., k1]
8'£f(v)—0k[oz2( 1o, (+1)]

kn-1 n—1

_Z . Z H( )ae Q(O)akze (O)

ln—1=07=0 ]

A termis nonzero only for £ = 71-[1] + 71-[1] and k — ¢ = 71-[2] -+ 71-[2] where
wz[l] e I, and 7T£2] =l ] —
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Therefore, for k = it + wl 4 712l 4 #[2]

85]0(/0): Z H ( [1] ) T Oér(O)a ozr(O)
Y e 1
1 °%2 r
nr=1 gl g a2 A2
x Z H ( [2] )821: O — r(O)a ap—r(0)
7.‘.[1 ]’71.[22]€|—|n_r i=0 W

=sf?(r — 1)sf?(n —r — 1)
x 3 (=1)7F) ¥ (—1)o(m2) H (7?1,¢+772,7;>

i€l mwo€&ll, 1,4

_7/‘_1 . .
D DR GV DR EED LGN § (N (e
G ST P woell,_r 1=0 1,3
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|dentifying a sum with a determinant and permuting rows,

Z (_1)0(71'2) H (ﬂ-l’i_I_.?TQZ)—det(AEf]Z])Z’] 0.5 1

= (~1)"™ det(A;*)); j—o, 51,

where A[S] = (H']) i,7=0,...,s — 1. Therefore,

Ok f(v) = sf(r — 1)sf(r)sf(n — r — 1)sf(n — r) det Al"l det Al"—7]
It is easy to see that det Als] = 1, consequently
Ok f(v) = sf(r — 1)sf(r)sf(n — r — 1)sf(n —r)

and we are done.
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Foreachr = O, ..., n we consider the contribution of the (’;f) vertices with
r (—1)s. The least non-zero derivative occurs when |n — 2r| is minimised

and it follows that

Theorem Itis true for w > 1 that
_1)NaNsf4(N — 1 o2
a1 () CRTA ST >+O(w 2N 1),
w

oo () 2(—1)NF1IgNIN+1)sf2(N — 1)sf2(N) i
~ w
2N L2N(N+1)+1

4 @(w—z(N2+N+1>),

Corollary For w > 1 the polynomial po>n(-,w) always exists, while
pon+1(-,w) exists except for a countable number of points asymptoti-

cally spaced at distance .
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Explaining a kiss Many features of classical orthogonal polynomials are
lost but the three-term recurrence relation, being a purely algebraic arte-
fact, remains true,

hyp—2hn

h2 pn—l(xaw)a
n—1

Pn+1(z,w) = (2 — an)pn(z,w) —

where

h.. 1 :
o, = 21 / :Bp%(x,w)e'wx dz.
hn J—1

Once hyn(w™) = 0, itfollows that p,, 1 (-, w™) blows up — more specifically,
letting

po M1 o Mp—1 1
pn (2, w) = hp_1(w)pn(z,w) = det| BT #2770 Fno B
| Hn Hp41 ccc H2p—1 X

we deduce that p,1(-,w*) = pn(-,w”) — one zero of p,, 4 travels to
oo and the remaining ones coincide with the zeros of p),: a kiss!
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We therefore deduce that (at least for w > 1) kisses occur between p- y;
and po N 41-

Symmetric functions Let w(x) be any symmetric function of zg, ..., z,,_1.
Then

/ / w(x) (2 — x3,)2e1 T dg

O<k<€<n 1

can be expanded in similar fashion. In particular, for 2 € Cs.t. [z = 1| > §

pan (@,w) ~ (a® — N + O0(w™h),
PoN+1(T,w) ~ (% — 1)N(z +icotw) + O(w_l).
Moreover,

N
pzN(LW)N?. i\]]\; -|-(9(w_N_1),
2N
1, w
pQN—l—l( ) ) ( )N

(1),
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Finally, expanding zeros of p,, near 41,

N
pan (14 =)~ 2 (o) + 0wV ),
N
P2N+1 (1 + —Llw> a 2w]]\>7! Ln(e) + O(w™ N1,

where L,, = |_7(%O) is the Laguerre polynomial.

Theorem Forw > 1 the zeros of p,, (except for the one zero on iR for odd
n) are of the form £[1 + ¢/(—iw)] + O(w—z), where L |, /o) (¢) = 0.

Recall that the zeros of p,, are the quadrature points of our scheme.

This creates a bridge between complex Gaussian quadrature and other highly oscillatory
quadrature methods, which tend — for perfectly valid reasons of asymptotics — to aggre-
gate near the endpoints. For example, numerical steepest descent uses exactly the points
+[1 + ¢/(—iw)] where cis as above.
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Further developments An aftermath of a kiss

Zeros of h,,_1 They can be again analysed using asymptotic expansions,
whereby they become expressible using the Lambert W function.
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Existence — or otherwise — of p>; forall w > 0

The method of proof is a homotopy from w > 1 (where we know that
hon_1(w) # 0) to all w > 0. An important role is played by o, such that

pn(z) = 2" — opz” 1 4+ ... —e.g. in the recurrence relation
h, _~h
Ppt+1(z) = (& — 0opy1 + on)pn(x) — Zz—npn—l-
n—1

It is possible to prove that
By (W) = ion(w)hn—1 (W)
and this gives us a handle on i/ ;.

Theorem The Hankel determinant hon_1 IS nonzero for all w > O.

Suppose that this isn’t true and let w* be the largest value of w for which a zero occurs.
Then h,—1(w*) = h!,_;(w*) = 0O, but we can prove that this is impossible.
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Other complex measures Sky is the limit! So far, we have analysed the
sesquilinear form

pae= [ p@)a@)e " gz

and we can say a great deal about the underlying polynomials. Their be-
haviour (and the proofs) is much more complicated but, at least asymptot-
ically, all h,,_1s are nonzero. The zeros don’t kiss but they display a wide
range of other fascinating behaviour.

But this belongs to another talk...
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You must remember this,

A Kiss Is just a Kiss,

A 1) is just a 1.

The fundamental things apply
Ast > 1.
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