

UNIVERSITY OF CAMBRIDGE

CENTRE FOR MATHEMATICAL SCIENCES

DEPARTMENT OF APPLIED MATHEMATICS & THEORETICAL PHYSICS

The motivation: Highly oscillatory quadrature

Compute

$$I[f] = \int_a^b f(x) e^{i\omega g(x)} dx, \qquad \omega \gg 1.$$

★ Classical Gaussian quadrature requires $\mathcal{O}(\omega)$ points – useless!

★ Modern methods (Filon, Levin, numerical steepest descent), based on asymptotic expansions, are very effective and very high accuracy is attainable uniformly in ω – paradoxically, accuracy increases as ω grows.

But... why not consider complex-valued Gaussian quadrature?

Use the sesquilinear form

$$\langle p,q\rangle_{\omega} = \int_{a}^{b} p(x)q(x)e^{\mathrm{i}\omega g(x)} \,\mathrm{d}x, \qquad \omega \ge 0,$$

to define orthogonal polynomials – thus, we seek monic $p_n \in \mathbb{P}_n$ s.t.

$$\langle p_n, x^\ell \rangle_\omega = 0, \qquad \ell = 0, \dots, n-1.$$

Provided that such a p_n exists, let its zeros be $c_k = c_k(\omega), k = 1, \ldots, n$,

$$b_k = b_k(\omega) = \int_a^b \prod_{\substack{\ell=1\\\ell\neq k}}^n \frac{x - c_\ell}{c_k - c_\ell} e^{i\omega g(x)} dx, \qquad k = 1, \dots, n$$

and set

$$Q[f] = \sum_{k=1}^{n} b_k f(c_k).$$

How good is Q[f]? Consider

 $I[f] = \int_{-1}^{1} f(x) e^{i\omega x} dx \quad \text{and} \quad I[f] = \int_{-1}^{1} f(x) e^{i\omega x^2} dx$
for $f(x) = e^x$.

In all figures we display $-\log_{10}$ (i.e., the number of significant digits) of the error for $\omega \in [0, 100]$. For plain Gaussian quadrature we plot it for $n = 4, 8, \ldots, 24$, for asymptotic methods and for complex Gaussian quadrature for an increasing number of points.

Gaussian quadrature

Asymptotic quadrature

Filon-type quadrature

Numerical steepest descent

Complex-valued Gaussian quadrature

Asheim, Deaño, Huybrechs & Wang:

1. The error of complex Gaussian quadrature is $\mathcal{O}(\omega^{-2n-1})$;

2. The quadrature seems to exist for all even n but fails for a countable number of values of ω for an odd n;

3. The zeros of $p_n(\cdot, \omega)$, the *n*th-degree orthogonal polynomial w.r.t. $d\mu(x, \omega) = e^{i\omega x} dx$, describe a strange pattern in the complex plane.

In this talk we explain this and much more, describing in great detail the **kissing polynomials**: the polynomials orthogonal w.r.t.

$$\langle p,q\rangle_{\omega} = \int_{-1}^{1} p(x)q(x) \mathrm{e}^{\mathrm{i}\omega x} \,\mathrm{d}x.$$

The zeros and beyond: An anatomy of a kiss

The zeros of p_6 (in green) and p_7 (in purple) as ω travels from 0 to $+\infty$

Moments and Hankel determinants Let

$$h_{n}(\omega) = \det \begin{bmatrix} \mu_{0} & \mu_{1} & \cdots & \mu_{n} \\ \mu_{1} & \mu_{2} & \cdots & \mu_{n+1} \\ \vdots & \vdots & & \vdots \\ \mu_{n} & \mu_{n+1} & \cdots & \mu_{2n} \end{bmatrix}, \text{ where } \mu_{n} = \int_{-1}^{1} x^{n} e^{i\omega x} dx.$$

Then p_n exists iff $h_{n-1} \neq 0$ – indeed,

$$p_n(x,\omega) = \frac{1}{h_{n-1}} \det \begin{bmatrix} \mu_0 & \mu_1 & \cdots & \mu_{n-1} & 1\\ \mu_1 & \mu_2 & \cdots & \mu_n & x\\ \vdots & \vdots & & \vdots & \vdots\\ \mu_n & \mu_{n+1} & \cdots & \mu_{2n-1} & x^n \end{bmatrix}.$$

Hankel determinants are often of minor importance in OP theory because $h_n > 0$ for all Borel measures – but in our case all we can say by this stage is that h_n is complex and, at least in principle, it might be zero.

The asymptotics of Hankel determinants

We commence from an old result of Heine,

$$h_{n-1} = \frac{1}{n!} \int_{-1}^{1} \cdots \int_{-1}^{1} \prod_{0 \le k < \ell \le n-1} (x_{\ell} - x_k)^2 \mathrm{e}^{\mathrm{i}\omega \mathbf{1}^{\mathsf{T}} x} \, \mathrm{d}x_0 \cdots \, \mathrm{d}x_{n-1},$$

which we expand asymptotically in ω . Iterating

$$\int_{-1}^{1} f(x) \mathrm{e}^{\mathrm{i}\omega x} \,\mathrm{d}x \sim -\sum_{m=0}^{\infty} \frac{1}{(-\mathrm{i}\omega)^{m+1}} [\mathrm{e}^{\mathrm{i}\omega} f^{(m)}(1) - \mathrm{e}^{-\mathrm{i}\omega} f^{(m)}(-1)],$$

we have

$$\int_{-1}^{1} \cdots \int_{-1}^{1} f(\boldsymbol{x}) \mathrm{e}^{\mathrm{i}\omega \mathbf{1}^{\top}\boldsymbol{x}} \,\mathrm{d}\boldsymbol{x}$$
$$\sim (-1)^{n} \sum_{m=0}^{\infty} \frac{1}{(-\mathrm{i}\omega)^{m+n}} \sum_{|\boldsymbol{k}|=m} \sum_{\boldsymbol{v}\in\mathcal{V}_{n}} (-1)^{s(\boldsymbol{v})} \mathrm{e}^{\mathrm{i}\omega \mathbf{1}^{\top}\boldsymbol{v}} \partial_{\boldsymbol{x}}^{\boldsymbol{k}} f(\boldsymbol{v}),$$

where \mathcal{V}_n are the vertices of $[-1, 1]^n$ and s(v) is the number of (-1)s at the vertex v.

We need to consider derivatives of

$$f(x) = \prod_{k=0}^{n-2} \prod_{\ell=k+1}^{n-1} (x_{\ell} - x_{k})^{2}$$

at a vertex $v \in V_n$. The problem is that many derivatives vanish!

Everything is symmetric, hence we can assume that for s(v) = r we have

$$v = (\overbrace{-1, \dots, -1}^{r \text{ times}}, \overbrace{+1, \dots, +1}^{n-r \text{ times}})$$

Let

$$\alpha_r(x) = \prod_{0 \le k < \ell \le r-1} (x_\ell - x_k), \qquad \beta_{n,r}(x) = \prod_{k=0}^{r-1} \prod_{\ell=r}^{n-1} (x_\ell - x_k),$$

then

$$f(x) = \alpha_r^2(x_0, \dots, x_{r-1}) \alpha_{n-r}^2(x_r, \dots, x_{n-1}) \beta_{n,r}^2(x_0, \dots, x_{n-1}).$$

11

To determine the leading expansion term, we note that $\beta_{n,r}(v) = 2^{r(n-r)}$, therefore we need be concerned just with α_r at -1 and α_{n-r} at +1. Since $\alpha(x + a1) = \alpha(x)$ for all $x \in \mathbb{R}^n$, $a \in \mathbb{R}$, it is sufficient to examine these expansions at x = 0.

By the definition of a determinant,

$$\alpha_r(\mathbf{x}) = \mathsf{VDM}(x_0, \dots, x_{r-1}) = \sum_{\pi \in \Pi_r} (-1)^{\sigma(\pi)} x_0^{\pi_0} x_1^{\pi_1} \cdots x_{r-1}^{\pi_{r-1}},$$

where Π_r is the set of permutations of length r and $\sigma(\pi)$ is the sign of π . We deduce that $\partial_x^k \alpha_r(0) = 0$ unless $k = \pi \in \Pi_r - in$ the latter case

$$\partial_x^{\pi} \alpha_r(0) = (-1)^{\sigma(\pi)} \prod_{j=0}^{r-1} \pi_j! = (-1)^{\sigma(\pi)} \mathrm{sf}(r-1),$$

where $sf(m) = 0!1! \cdots m!$ is a super-factorial.

Consequently,

$$\partial_x^k \alpha_r^2(0) = \begin{cases} (-1)^{\sigma(\pi_1) + \sigma(\pi_2)} \mathrm{sf}^2(r-1), & k = \pi_1 + \pi_2, \\ 0, & \text{otherwise.} \end{cases}$$

We have for the multi-index $\mathbf{k} = [k_0, \dots, k_{n-1}]$

$$\partial_x^k f(v) = \partial_x^k [\alpha_r^2(-1)\alpha_{n-r}^2(+1)]$$

= $\sum_{\ell=0}^{k_0} \cdots \sum_{\ell_{n-1}=0}^{k_{n-1}} \prod_{j=0}^{n-1} {k_j \choose \ell_j} \partial_x^\ell \alpha_r^2(0) \partial_x^{k-\ell} \alpha_{n-r}^2(0).$

A term is nonzero *only* for $\ell = \pi_1^{[1]} + \pi_2^{[1]}$ and $k - \ell = \pi_1^{[2]} + \pi_2^{[2]}$, where $\pi_i^{[1]} \in \Pi_r$ and $\pi_i^{[2]} \in \Pi_{n-r}$.

Therefore, for
$$k = \pi_1^{[1]} + \pi_2^{[1]} + \pi_1^{[2]} + \pi_2^{[2]}$$
,
 $\partial_x^k f(v) = \sum_{\substack{\pi_1^{[1]}, \pi_2^{[1]} \in \Pi_r}} \prod_{i=0}^{r-1} {\pi_{1,i}^{[1]} + \pi_{2,i}^{[1]} \over \pi_{1,i}^{[1]}} \partial_x^{\pi_1^{[1]}} \alpha_r(0) \partial_x^{\pi_2^{[1]}} \alpha_r(0)$
 $\times \sum_{\substack{\pi_1^{[2]}, \pi_2^{[2]} \in \Pi_{n-r}}} \prod_{i=0}^{n-r-1} {\pi_{1,i}^{[2]} + \pi_{2,i}^{[2]} \over \pi_{1,i}^{[2]}} \partial_x^{\pi_1^{[2]}} \alpha_{n-r}(0) \partial_x^{\pi_2^{[2]}} \alpha_{n-r}(0)$
 $= \mathrm{sf}^2(r-1)\mathrm{sf}^2(n-r-1)$
 $\times \sum_{\substack{\pi_1 \in \Pi_r}} (-1)^{\sigma(\pi_1)} \sum_{\substack{\pi_2 \in \Pi_r}} (-1)^{\sigma(\pi_2)} \prod_{i=0}^{r-1} {\pi_{1,i} + \pi_{2,i} \choose \pi_{1,i}}$
 $\times \sum_{\substack{\pi_1 \in \Pi_{n-r}}} (-1)^{\sigma(\pi_1)} \sum_{\substack{\pi_2 \in \Pi_{n-r}}} (-1)^{\sigma(\pi_2)} \prod_{i=0}^{n-r-1} {\pi_{1,i} + \pi_{2,i} \choose \pi_{1,i}}.$

Identifying a sum with a determinant and permuting rows,

$$\sum_{\pi_2 \in \Pi_s} (-1)^{\sigma(\pi_2)} \prod_{i=0}^{s-1} {\pi_{1,i} + \pi_{2,i} \choose \pi_{1,i}} = \det(A_{\pi_{1,i},j}^{[s]})_{i,j=0,\dots,s-1}$$
$$= (-1)^{\sigma(\pi_1)} \det(A_{i,j}^{[s]})_{i,j=0,\dots,s-1},$$

where $A_{i,j}^{[s]} = {i+j \choose i}$, $i, j = 0, \dots, s-1$. Therefore,

 $\partial_x^k f(v) = \mathrm{sf}(r-1)\mathrm{sf}(r)\mathrm{sf}(n-r-1)\mathrm{sf}(n-r)\det A^{[r]}\det A^{[n-r]}.$ It is easy to see that $\det A^{[s]} \equiv 1$, consequently

$$\partial_x^k f(v) = \mathrm{sf}(r-1)\mathrm{sf}(r)\mathrm{sf}(n-r-1)\mathrm{sf}(n-r)$$

and we are done.

For each r = 0, ..., n we consider the contribution of the $\binom{n}{r}$ vertices with r(-1)s. The *least* non-zero derivative occurs when |n - 2r| is minimised and it follows that

Theorem It is true for $\omega \gg 1$ that

$$\begin{split} h_{2N-1}(\omega) &\sim \frac{(-1)^N 4^{N^2} \mathrm{sf}^4(N-1)}{\omega^{2N^2}} + \mathcal{O}\left(\omega^{-2N^2-1}\right), \\ h_{2N}(\omega) &\sim \frac{2(-1)^{N+1} 4^{N(N+1)} \mathrm{sf}^2(N-1) \mathrm{sf}^2(N)}{\omega^{2N(N+1)+1}} \sin \omega \\ &+ \mathcal{O}\left(\omega^{-2(N^2+N+1)}\right). \end{split}$$

Corollary For $\omega \gg 1$ the polynomial $p_{2N}(\cdot, \omega)$ always exists, while $p_{2N+1}(\cdot, \omega)$ exists except for a countable number of points asymptotically spaced at distance π .

Explaining a kiss Many features of classical orthogonal polynomials are lost but the three-term recurrence relation, being a purely algebraic artefact, remains true,

$$p_{n+1}(x,\omega) = (x - \alpha_n)p_n(x,\omega) - \frac{h_{n-2}h_n}{h_{n-1}^2}p_{n-1}(x,\omega),$$

where

$$\alpha_n = \frac{h_{n-1}}{h_n} \int_{-1}^1 x p_n^2(x,\omega) \mathrm{e}^{\mathrm{i}\omega x} \,\mathrm{d}x.$$

Once $h_n(\omega^*) = 0$, it follows that $p_{n+1}(\cdot, \omega^*)$ blows up – more specifically, letting

$$\tilde{p}_{n}(x,\omega) = h_{n-1}(\omega)p_{n}(x,\omega) = \det \begin{bmatrix} \mu_{0} & \mu_{1} & \cdots & \mu_{n-1} & 1\\ \mu_{1} & \mu_{2} & \cdots & \mu_{n} & x\\ \vdots & \vdots & & \vdots & \vdots\\ \mu_{n} & \mu_{n+1} & \cdots & \mu_{2n-1} & x^{n} \end{bmatrix},$$

we deduce that $\tilde{p}_{n+1}(\cdot, \omega^*) = \tilde{p}_n(\cdot, \omega^*)$ – one zero of \tilde{p}_{n+1} travels to ∞ and the remaining ones coincide with the zeros of \tilde{p}_n : a kiss!

We therefore deduce that (at least for $\omega \gg 1$) kisses occur between p_{2N} and p_{2N+1} .

Symmetric functions Let w(x) be any symmetric function of x_0, \ldots, x_{n-1} . Then

$$\int_{-1}^{1} \cdots \int_{-1}^{1} w(\boldsymbol{x}) \prod_{0 \leq k < \ell \leq n-1} (x_{\ell} - x_{k})^{2} \mathrm{e}^{\mathrm{i}\omega \mathbf{1}^{\top}\boldsymbol{x}} \, \mathrm{d}\boldsymbol{x}$$

can be expanded in similar fashion. In particular, for $z \in \mathbb{C}$ s.t. $|z \pm 1| > \delta$

$$p_{2N}(x,\omega) \sim (x^2 - 1)^N + \mathcal{O}(\omega^{-1}),$$

$$p_{2N+1}(x,\omega) \sim (x^2 - 1)^N (x + \operatorname{i} \operatorname{cot} \omega) + \mathcal{O}(\omega^{-1})$$

Moreover,

$$p_{2N}(1,\omega) \sim \frac{2^N N!}{(i\omega)^N} + \mathcal{O}\left(\omega^{-N-1}\right),$$
$$p_{2N+1}(1,\omega) \sim \frac{2^N N!}{(i\omega)^N} (1 + i\cot\omega) + \mathcal{O}\left(\omega^{-N-1}\right)$$

Finally, expanding zeros of p_n near +1,

$$p_{2N}\left(1+\frac{c}{-\mathrm{i}\omega}\right) \sim \frac{2^{N}N!}{\omega^{N}} \mathsf{L}_{N}(c) + \mathcal{O}\left(\omega^{-N-1}\right),$$
$$p_{2N+1}\left(1+\frac{c}{-\mathrm{i}\omega}\right) \sim \frac{2^{N}N!}{\omega^{N}} \mathsf{L}_{N}(c) + \mathcal{O}\left(\omega^{-N-1}\right),$$

where $L_n = L_n^{(0)}$ is the Laguerre polynomial.

Theorem For $\omega \gg 1$ the zeros of p_n (except for the one zero on $i\mathbb{R}$ for odd n) are of the form $\pm [1 + c/(-i\omega)] + O(\omega^{-2})$, where $L_{\lfloor n/2 \rfloor}(c) = 0$.

Recall that the zeros of p_n are the quadrature points of our scheme.

This creates a bridge between complex Gaussian quadrature and other highly oscillatory quadrature methods, which tend – for perfectly valid reasons of asymptotics – to aggregate near the endpoints. For example, numerical steepest descent uses *exactly* the points $\pm [1 + c/(-i\omega)]$ where *c* is as above.

Further developments An aftermath of a kiss

Zeros of h_{n-1} They can be again analysed using asymptotic expansions, whereby they become expressible using the Lambert W function.

Existence – or otherwise – of p_{2N} for all $\omega \geq 0$

The method of proof is a homotopy from $\omega \gg 1$ (where we know that $h_{2N-1}(\omega) \neq 0$) to all $\omega \geq 0$. An important role is played by σ_n such that $p_n(x) = x^n - \sigma_n x^{n-1} + \cdots - e.g$. in the recurrence relation

$$p_{n+1}(x) = (x - \sigma_{n+1} + \sigma_n)p_n(x) - \frac{h_{n-2}h_n}{h_{n-1}^2}p_{n-1}.$$

It is possible to prove that

$$h'_{n-1}(\omega) = i\sigma_n(\omega)h_{n-1}(\omega)$$

and this gives us a handle on h'_{n-1} .

Theorem The Hankel determinant h_{2N-1} is nonzero for all $\omega \ge 0$.

Suppose that this isn't true and let ω^* be the *largest* value of ω for which a zero occurs. Then $h_{n-1}(\omega^*) = h'_{n-1}(\omega^*) = 0$, but we can prove that this is impossible. **Other complex measures** Sky is the limit! So far, we have analysed the sesquilinear form

$$\langle p,q\rangle_{\omega} = \int_{-1}^{1} p(x)q(x)\mathrm{e}^{\mathrm{i}\omega x^{2}}\,\mathrm{d}x$$

and we can say a great deal about the underlying polynomials. Their behaviour (and the proofs) is *much* more complicated but, at least asymptotically, all h_{n-1} s are nonzero. The zeros don't kiss but they display a wide range of other fascinating behaviour.

But this belongs to another talk...

You must remember this, A kiss is just a kiss, A ψ is just a ψ . The fundamental things apply As $t \gg 1$.

