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Introduction: Classical and classical discrete orthogonal
polynomials

Askey tableau is an organize hierarchy of the most important families of
orthogonal polynomials (hypergeometric orthogonal polynomials). These
families are known as classical and besides the orthogonality they are also
common eigenfunctions of certain exclusive types of second order operators.
Namely:

1 Second order differential operators give rise to the classical families of
Hermite, Laguerre and Jacobi polynomials (and Bessel if we also consider
orthogonality with respect to signed measures).

2 Second order difference operators give rise to the classical discrete
families of Charlier, Meixner, Krawtchouk and Hahn polynomials (lineal
lattice); dual Hahn, Racah, Wilson... (quadratic lattice).

The physical meaning of the equations associated to these second order
operators (specially to the differential ones) makes the corresponding families
of orthogonal polynomials very useful in physics (specially in quantum physics).
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Expanding Askey scheme: Krall and Exceptional
polynomials

The purpose of this talk is to show how Askey scheme can be expanded by
including two of the most important extensions of the classical families: Krall
and exceptional polynomials.

Krall (or bispectral) polynomials (1940): Orthogonal polynomials that are also
eigenfunctions of a differential or difference operator of order k, k ≥ 2. The
first examples were introduced by H. Krall in 1940, and since the eighties a lot
of effort has been devoted to this issue (with contributions by L.L. Littlejohn,
A.M. Krall, J. and R. Koekoek. A. Grünbaum and L. Haine (and collaborators),
K.H. Kwon (and collaborators), A. Zhedanov, P. Iliev, and many others).

Exceptional polynomials (2007): pn, n ∈ X $ N, orthogonal and complete in
L2(µ), that are also eigenfunctions of a second order differential or difference
operator (rational coefficients in the operators)
Motivation: In mathematical physics, these functions allow to write exact
solutions to rational extensions of classical quantum potentials. Exceptional
polynomials appeared some seven years ago, but there has been a remarkable
activity around them mainly by theoretical physicists (with contributions by D.
Gómez-Ullate, N. Kamran and R. Milson, Y. Grandati, C. Quesne, S. Odake
and R. Sasaki, and many others).
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Gómez-Ullate, N. Kamran and R. Milson, Y. Grandati, C. Quesne, S. Odake
and R. Sasaki, and many others).

Antonio J. Durán Universidad de Sevilla Extending Askey tableau



Expanding Askey scheme: Krall and Exceptional
polynomials

The purpose of this talk is to show how Askey scheme can be expanded by
including two of the most important extensions of the classical families: Krall
and exceptional polynomials.

Krall (or bispectral) polynomials (1940): Orthogonal polynomials that are also
eigenfunctions of a differential or difference operator of order k, k ≥ 2. The
first examples were introduced by H. Krall in 1940, and since the eighties a lot
of effort has been devoted to this issue (with contributions by L.L. Littlejohn,
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A.M. Krall, J. and R. Koekoek. A. Grünbaum and L. Haine (and collaborators),
K.H. Kwon (and collaborators), A. Zhedanov, P. Iliev, and many others).

Exceptional polynomials (2007): pn,

n ∈ X $ N,

orthogonal

and complete in
L2(µ),

that are also eigenfunctions of a second order differential or difference
operator

(rational coefficients in the operators)

Motivation: In mathematical physics, these functions allow to write exact
solutions to rational extensions of classical quantum potentials. Exceptional
polynomials appeared some seven years ago, but there has been a remarkable
activity around them mainly by theoretical physicists (with contributions by D.
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Gómez-Ullate, N. Kamran and R. Milson, Y. Grandati, C. Quesne, S. Odake
and R. Sasaki, and many others).

Antonio J. Durán Universidad de Sevilla Extending Askey tableau



Expanding Askey scheme: Krall and Exceptional
polynomials

The purpose of this talk is to show how Askey scheme can be expanded by
including two of the most important extensions of the classical families: Krall
and exceptional polynomials.

Krall (or bispectral) polynomials (1940): Orthogonal polynomials that are also
eigenfunctions of a differential or difference operator of order k, k ≥ 2. The
first examples were introduced by H. Krall in 1940, and since the eighties a lot
of effort has been devoted to this issue (with contributions by L.L. Littlejohn,
A.M. Krall, J. and R. Koekoek. A. Grünbaum and L. Haine (and collaborators),
K.H. Kwon (and collaborators), A. Zhedanov, P. Iliev, and many others).

Exceptional polynomials (2007): pn, n ∈ X $ N, orthogonal

and complete in
L2(µ),

that are also eigenfunctions of a second order differential or difference
operator (rational coefficients in the operators)
Motivation: In mathematical physics, these functions allow to write exact
solutions to rational extensions of classical quantum potentials. Exceptional
polynomials appeared some seven years ago, but there has been a remarkable
activity around them mainly by theoretical physicists (with contributions by D.
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Krall polynomials

Differential operators

How can one construct Krall polynomials?
Take the Laguerre or Jacobi weights, assume one or two of the parameters are
nonnegative integers and add a Dirac delta at one or two of the end points of
the interval of orthogonality.
Krall-Laguerre polynomials: (J and R Koekoek, 1991) α ∈ N, α ≥ 1

qn(x) = Lαn (x)− 1 + M(n + 1)α
1 + M(n)α

Lαn−1(x),

orthogonal with respect to

µM,α = αΓ2(α)Mδ0 + xα−1e−x , x > 0.

Operator’s order: 2α + 2.
This weight measure is a Geronimous transform of the Laguerre weight:

xµM,α = xαe−x .
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Exceptional polynomials: Differential operators

How can one construct exceptional polynomials? Using Wronskian type
determinants whose entries are classical orthogonal polynomials.
Exceptional Hermite polynomials. Gómez-Ullate+Grandati+Milson; A.J.D.
Given a finite set of positive integers F = {f1, · · · , fk},

HF
n (x) = Wr(Hn−uF ,Hf1 , · · · ,Hfk) =

∣∣∣∣∣∣∣∣∣∣
Hn−uF (x) H ′n−uF (x) · · · H

(k)
n−uF

(x)

Hf1(x) H ′f1(x) · · · H
(k)
f1

(x)
...

...
. . .

...

Hfk (x) H ′fk (x) · · · H
(k)
fk

(x)

∣∣∣∣∣∣∣∣∣∣
uF =

∑
f∈F

f −

(
k + 1

2

)
(deg(HF

n ) = n). n ∈ σF = {uF , uF + 1, · · · } \ (uF + F );
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Formally, they are orthogonal with respect to the weight

e−x2

Ω2
F (x)

, x ∈ R. ΩF (x) = Wr(Hf1 , · · · ,Hfk)

Such weight function is integrable if and only if ΩF (x) 6= 0, x ∈ R.
Krein (1957); Adler (1994)
ΩF (x) 6= 0, x ∈ R if and only if

∏
f∈F (n − f ) ≥ 0, n ∈ N.
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8 Without known
connection

9

Geronimus transform ↖ ↗ Wronskian type det.

⇑ Passing to the limit
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Krall discrete polynomials.

Difference operators

What we know for the differential case has seemed to be of little help because
adding Dirac deltas to the classical discrete measures seems not to work.
Indeed, Richard Askey in 1991 explicitly posed the problem of finding the first
examples of Krall-discrete polynomials. He suggested to study measures which
consist of some classical discrete weights together with a Dirac delta at the end
point(s) of the interval of orthogonality. Three years later, Bavinck, van
Haeringen and Koekoek gave a negative answer to Askey’s question: they
added a Dirac delta at zero to the Charlier and Meixner weights and
constructed difference operators with respect to which the corresponding
orthogonal polynomials are eigenfunctions... but these difference operators have
always infinite order.
In 2011, this speaker found the first examples of measures whose orthogonal
polynomials are also eigenfunctions of higher order difference operator.
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added a Dirac delta at zero to the Charlier and Meixner weights and
constructed difference operators with respect to which the corresponding
orthogonal polynomials are eigenfunctions... but these difference operators have
always infinite order.
In 2011, this speaker found the first examples of measures whose orthogonal
polynomials are also eigenfunctions of higher order difference operator.
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Krall discrete polynomials

How can we generate orthogonal polynomials which are also eigenfunctions of a
higher order difference operator?

Apply a suitable Christoffel transform to the classical discrete measures, that is,
multiply the classical discrete measures by suitable polynomials.

Depending on the classical discrete measure, we have found several classes of
suitable polynomials for which this procedure works (1 class for Charlier, 2
classes for Meixner and Krawtchouk and 4 classes for Hahn; the cross product
of these classes also works).
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Krall-Charlier polynomials

Charlier weight: 0 < a, ρa =
∞∑
x=0

ax

x!
δx (Poisson distr.)

(can)n∈N ≡ Charlier orthogonal polynomials (can(x) = xn/n! + · · · )

F : finite set of positive integers, k = |F |,

∏
f∈F (x − f ) ≥ 0, x ∈ N (actually, this is needed only if one can work with positive measures).

ρFa =
∞∑
x=0

∏
f∈F

(x − f )

ax

x!
δx , suppρFa = N \ F .

Conjecture AJD, 2011: The orthogonal polynomials with respect to the
positive measure ρFa are common eigenfunctions of a difference operator D of
(minimal) order

r = 2

(∑
x∈F

x − nF (nF − 1)

2
+ 1

)
.

(The same if one changes the Charlier weight by any of the other classical
discrete weights of Meixner, Krawtchouk or Hahn).

Theorem (A.J.D.+M.D. de la Iglesia, 2014) Orthogonal polynomials with
respect to ρFa are eigenfunctions of a higher order difference operator of order r .
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Krall-Charlier polynomials

Theorem (A.J.D.+M.D. de la Iglesia, 2014) Orthogonal polynomials with
respect to ρFa are eigenfunctions of a higher order difference operator of order r .

One of the keys in the proof is the following determinantal expression for the
orthogonal polynomials qn with respect to ρFa

qn(x + fM + 1) =

∣∣∣∣∣∣∣∣∣∣
can(x) −can−1(x) · · · (−1)mcan−m(x)

c−a
g1 (−n − 1) c−a

g1 (−n) · · · c−a
g1 (−n + m − 1)

...
...

. . .
...

c−a
gm (−n − 1) c−a

gm (−n) · · · c−a
gm (−n + m − 1)

∣∣∣∣∣∣∣∣∣∣
.

where fM = máxF and the set G = {g1, · · · , gm} is defined by

G = {1, 2, · · · , fM} \ {fM − f , f ∈ F}.

Notice that G is defined from F using an involution for finite sets of positive
integers.
Υ = {F : F is finite set of positive integers}.

i(F ) = {1, 2, · · · , fM} \ {fM − f , f ∈ F}.
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Duality: an unexpected connection between Krall and
exceptional discrete polynomials

Leonard’s duality has shown to be a fruitful concept regarding discrete
orthogonal polynomials. For Charlier, Meixner and Krawtchouk families duality
means to swap the variable with the index.
It is well-known that the families of Charlier, Meixner and Krawtchouk are self
dual. For instance, if write (can)n for the Charlier polynomials (normalized so
that the leading coefficient is equal to 1/n!) Then:

n!

(−1)nan
can(m) =

m!

(−1)mam
cam(n), n,m ≥ 0.

What happens if we apply duality to the Krall discrete polynomials?
We get exceptional discrete polynomials!! (AJD (2013)).

This allows a nice and important extension of Askey tableau.
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8 Without known
connection

9

Geronimus transform ↖ ↗ Wronskian type det.

⇑ Passing to the limit

Christoffel transform ↙ ↘ Casoratian type det.
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Exceptional polynomials: Differential operators

The duality connection can be used to solve some of the most interesting
questions concerning exceptional polynomials; for instance, to find necessary
and sufficient conditions for the existence of orthogonality measures for
exceptional polynomials.

Exceptional Hermite polynomials are orthogonal with respect to the weight

e−x2

Ω2
F (x)

if and only if
∏

f∈F (n − f ) ≥ 0, n ∈ N (Krein-Adler admissibility condition).

Exceptional Hermite polynomials can be constructed starting from the
Charlier-Krall polynomials, using duality and passing to the limit (as when one
goes from Charlier to Hermite polynomials).
Charlier-Krall polynomials are orthogonal with respect to the weight

∞∑
n=0

(∏
f∈F

(n − f )

)
an

n!
δn,

Krein-Adler admissibility condition above is equivalent to the fact that
Charlier-Krall measure is positive!

Using this approach we have solved the problem of determining admissibility
conditions for Laguerre and Jacobi exceptional polynomials.
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The elegant symmetries of the Krall-discrete and
exceptional polynomials.

Underlying our construction of Krall-Charlier polynomials is the following nice
symmetry for Casoratian Charlier determinants F = {f1, · · · , fk}

Ωa
F (x) = det(cafi (x + j − 1))ki,j=1

i(F ) = {1, 2, · · · , fM} \ {fM − f , f ∈ F}

Ωa
F (x) = (−1)k+uF Ω

(−x)

This symmetry gives rise to the corresponding one for Wronskian determinant
of Hermite polynomials

ΩF (x) = det(H
(j−1)
fi

(x))ki,j=1

ΩF (x) = 2(k2)−(m2) VF

VG
Ω(−ix)

where VF =
∏

1≤i<y≤k(fj − fi ).
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